Budget-Dependent Convergence Rate of Stochastic Approximation
نویسندگان
چکیده
Convergence rate results are derived for a stochastic optimization problem where a performance measure is minimized with respect to a vector parameter θ. Assuming that a gradient estimator is available and that both the bias and the variance of the estimator are (known) functions of the budget devoted to its computation, the gradient estimator is employed in conjunction with a stochastic approximation (SA) algorithm. Our interest is to figure out how to allocate the total available computational budget to the successive SA iterations. The effort is devoted to solving the asymptotic version of this problem by finding the convergence rate of SA toward the optimizer, first as a function of the number of iterations and then as a function of the total computational effort. As a result the optimal rate of increase of the computational budget per iteration can be found. Explicit expressions for the case where the computational budget devoted to an iteration is a polynomial in the iteration number, and where the bias and variance of the gradient estimator are polynomials of the computational budget, are derived. Applications include the optimization of steady-state simulation models with likelihood ratio, perturbation analysis, or finite-difference gradient estimators; optimization of infinite-horizon models with discounting; optimization of functions of several expectations; and so on. Several examples are discussed. Our results readily generalize to general root-finding problems.
منابع مشابه
Optimal Budget Allocation for Sample Average Approximation
The sample average approximation approach to solving stochastic programs induces a sampling error, caused by replacing an expectation by a sample average, as well as an optimization error due to approximating the solution of the resulting sample average problem. We obtain estimators of an optimal solution and the optimal value of the original stochastic program after executing a finite number o...
متن کاملAsymptotic E ciency of Perturbation Analysis Based Stochastic Approximation with Averaging
Central limit theorems are obtained for the PARMSR (perturbation analysis Robbins-Monro single run) algorithm with averaging, updated either after every regenerative cycle or after every xed-length observation period, for one-dependent regenerative processes. These stochastic approximation algorithms with averaging turn out to have identical limiting behavior, i.e., the same convergence rate an...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملMulti-item inventory model with probabilistic demand function under permissible delay in payment and fuzzy-stochastic budget constraint: A signomial geometric programming method
This study proposes a new multi-item inventory model with hybrid cost parameters under a fuzzy-stochastic constraint and permissible delay in payment. The price and marketing expenditure dependent stochastic demand and the demand dependent the unit production cost are considered. Shortages are allowed and partially backordered. The main objective of this paper is to determine selling price, mar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 8 شماره
صفحات -
تاریخ انتشار 1998